| 356 | 0 | 274 |
| 下载次数 | 被引频次 | 阅读次数 |
在新发展格局背景下,探究产业链国内和国际关联对不同技术阶段产业下企业全要素生产率的差异化影响具有战略意义。文章基于2000—2020年上市企业数据和OECD发布的2023版世界投入产出数据库(ICIO),揭示了不同产业在产业链国内与国际关联特性下的异质性表现以及产业链关联影响产业内企业全要素生产率的机制。研究发现:产业链关联是否有助于全要素生产率增长,取决于产业链国内与国际关联特性和该产业处于世界技术前沿发展的相对阶段。产业链国内与国际前向关联对国内成熟型产业内企业的全要素生产率增长产生积极影响;产业链国际后向关联对国内追赶型产业内企业的全要素生产率有积极作用;产业链国内前向与后向关联对全球新兴产业内企业全要素生产率具有促进作用。机制分析表明,产业链关联对产业生产率的促进是通过知识溢出实现的。基于上述研究,文章针对三种产业类型提出政策建议,以助力各产业的高质量发展,全面提升各类产业的竞争力和发展潜力。
Abstract:In the context of the new development pattern,it is of strategic significance to explore the impact of domestic and international linkages of the industrial chain on the total factor productivity differentiation of enterprises under industries at different technological stages.Based on the data of listed enterprises from 2000 to 2020 and the data of the World Input-Output Database( ICIO) issued by OECD,this paper reveals the heterogeneous performance of different industries under the characteristics of domestic and international linkages of the industrial chain,as well as the mechanisms affecting the total factor productivity of enterprises under the industries. The study finds that whether industry chain linkages contribute to total factor productivity growth depends on the characteristics of domestic and international linkages of the industry chain and the relative stage of the industry in the development of the world's technological frontier. The domestic and international forward linkage of the industrial chain has a positive impact on the total factor productivity growth of enterprises in domestic mature industries; the international backward linkage of the industrial chain has a positive effect on the total factor productivity of enterprises in domestic catch-up industries. The domestic forward and backward linkage of the industrial chain has a promoting effect on the global emerging industries; the international forward and backward linkage of the industrial chain fails to promote the total factor productivity of the enterprises under the global emerging industries mainly because these industries are of strategic significance,facing the technological blockade of the developed countries,and they can only enhance the total factor productivity of the industries by strengthening the domestic industrial chain through innovation; the analysis of the mechanism shows that the promotion of the industrial chain linkage on the industrial productivity of global emerging industries is realized through the knowledge spillover. The mechanism analysis shows that the promotion of industrial productivity by industry chain association is realized through knowledge spillover. Based on the above research results,this paper puts forward targeted policy recommendations for the three types of industries,in order to help the high-quality development of each industry,and comprehensively enhance the competitiveness and development potential of each type of industry.
[1] Antràs B P,Chor D,Fally T,et al.Measuring the upstreamness of production and trade flows[J].American Economic Review,2012,102:412-416.
[2] Audretsch D B,Belitski M,Spadavecchia A,et al.The more,the merrier or the less is more?The role of firm capabilities and industry in the knowledge spillover of innovation[J].Technovation,2024,138:103115.
[3] Baldwin J,YAN B.Global value chains and the productivity of Canadian manufacturing firms[J].Statistics Canada,2014,90:184-194.
[4] Chiarvesio M,Di Maria E,Micelli S.Global value chains and open networks:The case of italian industrial districts[J].European Planning Studies,2010,18(3):333-350.
[5] Fally T.Production staging:Measurement and facts[R].University of Colorado Boulder Working Paper,2012.
[6] Formana C,Nicolas V Z.Digital technology adoption and knowledge flows within firms:Can the internet overcome geographic and technological distance?[J].Research Policy,2019,48:103697.
[7] Fronzetti C A,Guardabascio B,Venturini F.A new mapping of technological interdependence[J].Research Policy,2025,54(1):105126.
[8] Griffith R,Redding S,Van Reenen J.Mapping the two faces of R&D:Productivity growth in a panel of OECD industries[J].Review of Economics and Statistics,2004,86(4):883-895.
[9] Ho C,WANG W,YU J.International knowledge spillover through trade:A time-varying spatial panel data approach[J].Economics Letters,2018,162:30-33.
[10] Johnson R C,Noguera G.Accounting for intermediates:Production sharing and trade in value added[J].Journal of International Economics,2012,86(2):224-236.
[11] Kee H L,TANG H.Domestic value added in exports:Theory and firm evidence from China[J].American Economic Review,2016,106(6):1402-1436.
[12] Kishi K,Okada K.The impact of trade liberalization on productivity distribution under the presence of technology diffusion and innovation[J].Journal of International Economics,2021,128:103396.
[13] Koopman R,WANG Z,WEI S.Tracing value-added and double counting in gross exports[J].American Economic Review,2014,104(2):459-494.
[14] LIANG Y,SHI K,TAO H,et al.Learning by exporting:Evidence from patent citations in China[J].Journal of International Economics,2024,150:103933.
[15] MAO J,TANG S,XIAO Z,et al.Industrial policy intensity,technological change,and productivity growth:Evidence from China[J].Research Policy,2021,50:104287.
[16] Miler R E,Temurshoev U.Output upstreammess and input downstreamnes of industries/countries in world production[J].Intemational Regional Science Review,2017,40(5):443-475.
[17] Muradov K.Structure and length of value chains[J].SSRN Electronic Journal,2016:3054155.
[18] Papazoglou M E,Spanos Y E.Bridging distant technological domains:A longitudinal study of the determinants of breadth of innovation diffusion[J].Research Policy,2018,47(9):1713-1728.
[19] Polantràs B,Davinchor.Organizing the global value chain[J].Economertica,2013,81(6):2127-2204.
[20] Romero I,Dietzenbacher E,Hewings G J D.Fragmentation and complexity:Analyzing structural change in the Chicago regional economy[J].Revista De Economia Mundial,2009,23:263-282.
[21] Upward R,WANG Z,ZHENG J.Weighing China′s export basket:The domestic content and technology intensity of Chinese exports[J].Journal of Comparative Economics,2013,41(2):527-543.
[22] 陈爱贞,陈凤兰,何诚颖.产业链关联与企业创新[J].中国工业经济,2021(9):80-98.
[23] 戴翔,杨双至.数字赋能、数字投入来源与制造业绿色化转型[J].中国工业经济,2022(9):83-101.
[24] 冯沛.投入产出视角下的中国全产业链研究[J].统计与信息论坛,2014(8):74-79.
[25] 郭蕾,肖淑芳,李雪婧,等.非高管员工股权激励与创新产出——基于中国上市高科技企业的经验证据[J].会计研究,2019(7):59-67.
[26] 黄群慧,倪红福.中国经济国内国际双循环的测度分析——兼论新发展格局的本质特征[J].管理世界,2021(12):40-58.
[27] 黄先海,高亚兴.数实产业技术融合与企业全要素生产率——基于中国企业专利信息的研究[J].中国工业经济,2023(11):118-136.
[28] 李宏,王云廷,吴东松.专利质量对企业出口竞争力的影响机制:基于知识宽度视角的探究[J].世界经济,2021(3):32-46;134.
[29] 李琦,刘力钢,邵剑兵.数字化转型、供应链集成与企业绩效——企业家精神的调节效应[J].经济管理,2021(10):5-23.
[30] 刘维林,李兰冰,刘玉海.全球价值链嵌入对中国出口技术复杂度的影响[J].中国工业经济,2014(6):83-95.
[31] 刘维刚,倪红福,夏杰长.生产分割对企业生产率的影响[J].世界经济,2017(8):29-52.
[32] 吕越,吕云龙.全球价值链嵌入会改善制造业企业的生产效率吗——基于双重稳健-倾向得分加权估计[J].财贸经济,2016(3):109-122.
[33] 马晓丽.国内价值链分工对制造业企业出口的影响[D].吉林大学博士学位论文,2023.
[34] 孟凡生,赵艳,冯耀辉,等.人工智能专利网络对企业智能化发展的影响[J].科研管理,2024(7):118-126.
[35] 倪红福,龚六堂,夏杰长.生产分割的演进路径及其影响因素——基于生产阶段数的考察[J].管理世界,2016(4):10-23;187.
[36] 孙启明,王浩宇.基于复杂网络的京津冀产业关联对比[J].经济管理,2016(4):24-35.
[37] 杨飞.产业智能化如何影响劳动报酬份额——基于产业内效应与产业关联效应的研究[J].统计研究,2022(2):80-95.
[38] 余典范,干春晖,郑若谷.中国产业结构的关联特征分析——基于投入产出结构分解技术的实证研究[J].中国工业经济,2011(11):5-15.
[39] 袁淳,肖土盛,耿春晓,等.数字化转型与企业分工:专业化还是纵向一体化[J].中国工业经济,2021(9):137-155.
[40] 张皓,赵佩玉,梁维娟,等.空间集聚、产业关联与企业创新[J].产业经济研究,2022(5):28-41.
[41] 张杰,郑文平.创新追赶战略抑制了中国专利质量么?[J].经济研究,2018(5):28-41.
[42] 郑玉,郑江淮,王高凤.国际生产分割生产率效应的空间溢出——基于跨国空间面板杜宾模型的实证分析[J].产业经济研究,2017(6):103-116.
(1)具体制造业产业类型划分如下,限于篇幅划分依据留存备索。TypeI(国内成熟):C13、C14、C15、C17、C18、C19、C20、C21、C22、C23、C24、C30、C31、C32、C33、C37;TypeII(国内追赶):C25、C26、C28、C29、C34、C35、C38、C40、C41、C42;TypeIII(全球新兴):C27、C36、C39。
(2)ddl表示产业链国内后向关联;dfl表示产业链国际后向关联;fdl表示产业链国内前向关联;ffl表示产业链国际前向关联;DC表示国内循环度;IC表示国际循环度。
(3)限于篇幅,稳健性检验、内生性检验和异质性分析结果留存备索。
基本信息:
DOI:10.13516/j.cnki.wes.2025.10.002
中图分类号:F279.2;F832.51
引用信息:
[1]汪芳,付怀玉,赵玉林.产业链关联的企业全要素生产率效应分析:国内主导与国际协同的异质性视角[J].世界经济研究,2025,No.380(10):31-45+135-136.DOI:10.13516/j.cnki.wes.2025.10.002.
基金信息:
国家社会科学基金项目“数字经济背景下制造业与互联网融合的产业组织重构与绩效提升机制研究”(项目编号:22BJY264)的资助